Papers
Topics
Authors
Recent
Search
2000 character limit reached

The effect of network structure on phase transitions in queuing networks

Published 7 Sep 2012 in physics.soc-ph, cs.SI, and physics.data-an | (1209.1476v1)

Abstract: Recently, De Martino et al have presented a general framework for the study of transportation phenomena on complex networks. One of their most significant achievements was a deeper understanding of the phase transition from the uncongested to the congested phase at a critical traffic load. In this paper, we also study phase transition in transportation networks using a discrete time random walk model. Our aim is to establish a direct connection between the structure of the graph and the value of the critical traffic load. Applying spectral graph theory, we show that the original results of De Martino et al showing that the critical loading depends only on the degree sequence of the graph -- suggesting that different graphs with the same degree sequence have the same critical loading if all other circumstances are fixed -- is valid only if the graph is dense enough. For sparse graphs, higher order corrections, related to the local structure of the network, appear.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.