Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Supply Chain Management using Gravitational Search Algorithm and Multi Agent System (1209.0308v1)

Published 3 Sep 2012 in cs.MA and cs.AI

Abstract: Supply chain management is a very dynamic operation research problem where one has to quickly adapt according to the changes perceived in environment in order to maximize the benefit or minimize the loss. Therefore we require a system which changes as per the changing requirements. Multi agent system technology in recent times has emerged as a possible way of efficient solution implementation for many such complex problems. Our research here focuses on building a Multi Agent System (MAS), which implements a modified version of Gravitational Search swarm intelligence Algorithm (GSA) to find out an optimal strategy in managing the demand supply chain. We target the grains distribution system among various centers of Food Corporation of India (FCI) as application domain. We assume centers with larger stocks as objects of greater mass and vice versa. Applying Newtonian law of gravity as suggested in GSA, larger objects attract objects of smaller mass towards itself, creating a virtual grain supply source. As heavier object sheds its mass by supplying some to the one in demand, it loses its gravitational pull and thus keeps the whole system of supply chain per-fectly in balance. The multi agent system helps in continuous updation of the whole system with the help of autonomous agents which react to the change in environment and act accordingly. This model also reduces the communication bottleneck to greater extents.

Citations (8)

Summary

We haven't generated a summary for this paper yet.