Papers
Topics
Authors
Recent
2000 character limit reached

Novel Enlarged Shape Invariance Property and Exactly Solvable Rational Extensions of the Rosen-Morse II and Eckart Potentials (1208.6165v2)

Published 30 Aug 2012 in math-ph and math.MP

Abstract: The existence of a novel enlarged shape invariance property valid for some rational extensions of shape-invariant conventional potentials, first pointed out in the case of the Morse potential, is confirmed by deriving all rational extensions of the Rosen-Morse II and Eckart potentials that can be obtained in first-order supersymmetric quantum mechanics. Such extensions are shown to belong to three different types, the first two strictly isospectral to some starting conventional potential with different parameters and the third with an extra bound state below the spectrum of the latter. In the isospectral cases, the partner of the rational extensions resulting from the deletion of their ground state can be obtained by translating both the potential parameter $A$ (as in the conventional case) and the degree $m$ of the polynomial arising in the denominator. It therefore belongs to the same family of extensions, which turns out to be closed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.