Papers
Topics
Authors
Recent
2000 character limit reached

Regularity and stochastic homogenization of fully nonlinear equations without uniform ellipticity

Published 22 Aug 2012 in math.AP and math.PR | (1208.4570v4)

Abstract: We prove regularity and stochastic homogenization results for certain degenerate elliptic equations in nondivergence form. The equation is required to be strictly elliptic, but the ellipticity may oscillate on the microscopic scale and is only assumed to have a finite $d$th moment, where $d$ is the dimension. In the general stationary-ergodic framework, we show that the equation homogenizes to a deterministic, uniformly elliptic equation, and we obtain an explicit estimate of the effective ellipticity, which is new even in the uniformly elliptic context. Showing that such an equation behaves like a uniformly elliptic equation requires a novel reworking of the regularity theory. We prove deterministic estimates depending on averaged quantities involving the distribution of the ellipticity, which are controlled in the macroscopic limit by the ergodic theorem. We show that the moment condition is sharp by giving an explicit example of an equation whose ellipticity has a finite $p$th moment, for every $p<d$, but for which regularity and homogenization break down. In probabilistic terms, the homogenization results correspond to quenched invariance principles for diffusion processes in random media, including linear diffusions as well as diffusions controlled by one controller or two competing players.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.