Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative stochastic homogenization and regularity theory of parabolic equations (1705.07672v3)

Published 22 May 2017 in math.AP and math.PR

Abstract: We develop a quantitative theory of stochastic homogenization for linear, uniformly parabolic equations with coefficients depending on space and time. Inspired by recent works in the elliptic setting, our analysis is focused on certain subadditive quantities derived from a variational interpretation of parabolic equations. These subadditive quantities are intimately connected to spatial averages of the fluxes and gradients of solutions. We implement a renormalization-type scheme to obtain an algebraic rate for their convergence, which is essentially a quantification of the weak convergence of the gradients and fluxes of solutions to their homogenized limits. As a consequence, we obtain estimates of the homogenization error for the Cauchy-Dirichlet problem which are optimal in stochastic integrability. We also develop a higher regularity theory for solutions of the heterogeneous equation, including a uniform $C{0,1}$-type estimate and a Liouville theorem of every finite order.

Summary

We haven't generated a summary for this paper yet.