Papers
Topics
Authors
Recent
2000 character limit reached

Discrete series representations for sl(2|1), Meixner polynomials and oscillator models (1208.2536v3)

Published 13 Aug 2012 in math-ph, math.MP, math.RT, and quant-ph

Abstract: We explore a model for the one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). For this purpose, a class of discrete series representations of sl(2|1) is constructed, each representation characterized by a real number beta>0. In this model, the position and momentum operators of the oscillator are odd elements of sl(2|1) and their expressions involve an arbitrary parameter gamma. In each representation, the spectrum of the Hamiltonian is the same as that of the canonical oscillator. The spectrum of the momentum operator can be continuous or infinite discrete, depending on the value of gamma. We determine the position wavefunctions both in the continuous and discrete case, and discuss their properties. In the discrete case, these wavefunctions are given in terms of Meixner polynomials. From the embedding osp(1|2)\subset sl(2|1), it can be seen why the case gamma=1 corresponds to the paraboson oscillator. Consequently, taking the values (beta,gamma)=(1/2,1) in the sl(2|1) model yields the canonical oscillator.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube