Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Dimensional Screening Using Multiple Grouping of Variables (1208.2043v3)

Published 9 Aug 2012 in stat.ML, cs.IT, and math.IT

Abstract: Screening is the problem of finding a superset of the set of non-zero entries in an unknown p-dimensional vector \beta* given n noisy observations. Naturally, we want this superset to be as small as possible. We propose a novel framework for screening, which we refer to as Multiple Grouping (MuG), that groups variables, performs variable selection over the groups, and repeats this process multiple number of times to estimate a sequence of sets that contains the non-zero entries in \beta*. Screening is done by taking an intersection of all these estimated sets. The MuG framework can be used in conjunction with any group based variable selection algorithm. In the high-dimensional setting, where p >> n, we show that when MuG is used with the group Lasso estimator, screening can be consistently performed without using any tuning parameter. Our numerical simulations clearly show the merits of using the MuG framework in practice.

Citations (5)

Summary

We haven't generated a summary for this paper yet.