Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring Two-Event Structural Correlations on Graphs (1208.0221v1)

Published 1 Aug 2012 in cs.DB

Abstract: Real-life graphs usually have various kinds of events happening on them, e.g., product purchases in online social networks and intrusion alerts in computer networks. The occurrences of events on the same graph could be correlated, exhibiting either attraction or repulsion. Such structural correlations can reveal important relationships between different events. Unfortunately, correlation relationships on graph structures are not well studied and cannot be captured by traditional measures. In this work, we design a novel measure for assessing two-event structural correlations on graphs. Given the occurrences of two events, we choose uniformly a sample of "reference nodes" from the vicinity of all event nodes and employ the Kendall's tau rank correlation measure to compute the average concordance of event density changes. Significance can be efficiently assessed by tau's nice property of being asymptotically normal under the null hypothesis. In order to compute the measure in large scale networks, we develop a scalable framework using different sampling strategies. The complexity of these strategies is analyzed. Experiments on real graph datasets with both synthetic and real events demonstrate that the proposed framework is not only efficacious, but also efficient and scalable.

Citations (4)

Summary

We haven't generated a summary for this paper yet.