Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VOI-aware MCTS (1207.5589v1)

Published 24 Jul 2012 in cs.AI and cs.LG

Abstract: UCT, a state-of-the art algorithm for Monte Carlo tree search (MCTS) in games and Markov decision processes, is based on UCB1, a sampling policy for the Multi-armed Bandit problem (MAB) that minimizes the cumulative regret. However, search differs from MAB in that in MCTS it is usually only the final "arm pull" (the actual move selection) that collects a reward, rather than all "arm pulls". In this paper, an MCTS sampling policy based on Value of Information (VOI) estimates of rollouts is suggested. Empirical evaluation of the policy and comparison to UCB1 and UCT is performed on random MAB instances as well as on Computer Go.

Summary

We haven't generated a summary for this paper yet.