Papers
Topics
Authors
Recent
2000 character limit reached

Vine Constructions of Levy Copulas (1207.4309v2)

Published 18 Jul 2012 in stat.OT and q-fin.RM

Abstract: Levy copulas are the most general concept to capture jump dependence in multivariate Levy processes. They translate the intuition and many features of the copula concept into a time series setting. A challenge faced by both, distributional and Levy copulas, is to find flexible but still applicable models for higher dimensions. To overcome this problem, the concept of pair copula constructions has been successfully applied to distributional copulas. In this paper, we develop the pair construction for Levy copulas (PLCC). Similar to pair constructions of distributional copulas, the pair construction of a d-dimensional Levy copula consists of d(d-1)/2 bivariate dependence functions. We show that only d-1 of these bivariate functions are Levy copulas, whereas the remaining functions are distributional copulas. Since there are no restrictions concerning the choice of the copulas, the proposed pair construction adds the desired flexibility to Levy copula models. We discuss estimation and simulation in detail and apply the pair construction in a simulation study.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube