Papers
Topics
Authors
Recent
Search
2000 character limit reached

Solving Factored MDPs with Continuous and Discrete Variables

Published 11 Jul 2012 in cs.AI | (1207.4150v1)

Abstract: Although many real-world stochastic planning problems are more naturally formulated by hybrid models with both discrete and continuous variables, current state-of-the-art methods cannot adequately address these problems. We present the first framework that can exploit problem structure for modeling and solving hybrid problems efficiently. We formulate these problems as hybrid Markov decision processes (MDPs with continuous and discrete state and action variables), which we assume can be represented in a factored way using a hybrid dynamic Bayesian network (hybrid DBN). This formulation also allows us to apply our methods to collaborative multiagent settings. We present a new linear program approximation method that exploits the structure of the hybrid MDP and lets us compute approximate value functions more efficiently. In particular, we describe a new factored discretization of continuous variables that avoids the exponential blow-up of traditional approaches. We provide theoretical bounds on the quality of such an approximation and on its scale-up potential. We support our theoretical arguments with experiments on a set of control problems with up to 28-dimensional continuous state space and 22-dimensional action space.

Citations (75)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.