Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A Generative Bayesian Model for Aggregating Experts' Probabilities (1207.4144v1)

Published 11 Jul 2012 in cs.LG and stat.ML

Abstract: In order to improve forecasts, a decisionmaker often combines probabilities given by various sources, such as human experts and machine learning classifiers. When few training data are available, aggregation can be improved by incorporating prior knowledge about the event being forecasted and about salient properties of the experts. To this end, we develop a generative Bayesian aggregation model for probabilistic classi cation. The model includes an event-specific prior, measures of individual experts' bias, calibration, accuracy, and a measure of dependence betweeen experts. Rather than require absolute measures, we show that aggregation may be expressed in terms of relative accuracy between experts. The model results in a weighted logarithmic opinion pool (LogOps) that satis es consistency criteria such as the external Bayesian property. We derive analytic solutions for independent and for exchangeable experts. Empirical tests demonstrate the model's use, comparing its accuracy with other aggregation methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.