Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Texture Classification Using a Novel Compression-Based Similarity Measure (1207.3071v2)

Published 12 Jul 2012 in cs.CV and cs.LG

Abstract: Supervised pixel-based texture classification is usually performed in the feature space. We propose to perform this task in (dis)similarity space by introducing a new compression-based (dis)similarity measure. The proposed measure utilizes two dimensional MPEG-1 encoder, which takes into consideration the spatial locality and connectivity of pixels in the images. The proposed formulation has been carefully designed based on MPEG encoder functionality. To this end, by design, it solely uses P-frame coding to find the (dis)similarity among patches/images. We show that the proposed measure works properly on both small and large patch sizes. Experimental results show that the proposed approach significantly improves the performance of supervised pixel-based texture classification on Brodatz and outdoor images compared to other compression-based dissimilarity measures as well as approaches performed in feature space. It also improves the computation speed by about 40% compared to its rivals.

Citations (1)

Summary

We haven't generated a summary for this paper yet.