Asymptotic behavior of the Kawazumi-Zhang invariant for degenerating Riemann surfaces (1207.2353v1)
Abstract: Around 2008 N. Kawazumi and S. Zhang introduced a new fundamental numerical invariant for compact Riemann surfaces. One way of viewing the Kawazumi-Zhang invariant is as a quotient of two natural hermitian metrics with the same first Chern form on the line bundle of holomorphic differentials. In this paper we determine precise formulas, up to and including constant terms, for the asymptotic behavior of the Kawazumi-Zhang invariant for degenerating Riemann surfaces. As a corollary we state precise asymptotic formulas for the beta-invariant introduced around 2000 by R. Hain and D. Reed. These formulas are a refinement of a result Hain and Reed prove in their paper. We illustrate our results with some explicit calculations on degenerating genus two surfaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.