Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

'Say EM' for Selecting Probabilistic Models for Logical Sequences (1207.1353v1)

Published 4 Jul 2012 in cs.AI

Abstract: Many real world sequences such as protein secondary structures or shell logs exhibit a rich internal structures. Traditional probabilistic models of sequences, however, consider sequences of flat symbols only. Logical hidden Markov models have been proposed as one solution. They deal with logical sequences, i.e., sequences over an alphabet of logical atoms. This comes at the expense of a more complex model selection problem. Indeed, different abstraction levels have to be explored. In this paper, we propose a novel method for selecting logical hidden Markov models from data called SAGEM. SAGEM combines generalized expectation maximization, which optimizes parameters, with structure search for model selection using inductive logic programming refinement operators. We provide convergence and experimental results that show SAGEM's effectiveness.

Citations (26)

Summary

We haven't generated a summary for this paper yet.