Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Rainbow Cycles and Paths

Published 3 Jul 2012 in cs.DM and math.CO | (1207.0840v1)

Abstract: In a properly edge colored graph, a subgraph using every color at most once is called rainbow. In this thesis, we study rainbow cycles and paths in proper edge colorings of complete graphs, and we prove that in every proper edge coloring of K_n, there is a rainbow path on (3/4-o(1))n vertices, improving on the previously best bound of (2n+1)/3 from Gyarfas and Mhalla. Similarly, a k-rainbow path in a proper edge coloring of K_n is a path using no color more than k times. We prove that in every proper edge coloring of K_n, there is a k-rainbow path on (1-2/(k+1)!)n vertices.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.