Papers
Topics
Authors
Recent
2000 character limit reached

From characteristic functions to implied volatility expansions

Published 1 Jul 2012 in q-fin.CP, q-fin.GN, and q-fin.PR | (1207.0233v5)

Abstract: For any strictly positive martingale $S = \exp(X)$ for which $X$ has a characteristic function, we provide an expansion for the implied volatility. This expansion is explicit in the sense that it involves no integrals, but only polynomials in the log strike. We illustrate the versatility of our expansion by computing the approximate implied volatility smile in three well-known martingale models: one finite activity exponential L\'evy model (Merton), one infinite activity exponential L\'evy model (Variance Gamma), and one stochastic volatility model (Heston). Finally, we illustrate how our expansion can be used to perform a model-free calibration of the empirically observed implied volatility surface.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.