An algebraic approach to symmetric extended formulations
Abstract: Extended formulations are an important tool to obtain small (even compact) formulations of polytopes by representing them as projections of higher dimensional ones. It is an important question whether a polytope admits a small extended formulation, i.e., one involving only a polynomial number of inequalities in its dimension. For the case of symmetric extended formulations (i.e., preserving the symmetries of the polytope) Yannakakis established a powerful technique to derive lower bounds and rule out small formulations. We rephrase the technique of Yannakakis in a group-theoretic framework. This provides a different perspective on symmetric extensions and considerably simplifies several lower bound constructions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.