Papers
Topics
Authors
Recent
2000 character limit reached

Planar Lombardi Drawings for Subcubic Graphs

Published 26 Jun 2012 in cs.CG | (1206.6142v1)

Abstract: We prove that every planar graph with maximum degree three has a planar drawing in which the edges are drawn as circular arcs that meet at equal angles around every vertex. Our construction is based on the Koebe-Thurston-Andreev circle packing theorem, and uses a novel type of Voronoi diagram for circle packings that is invariant under Moebius transformations, defined using three-dimensional hyperbolic geometry. We also use circle packing to construct planar Lombardi drawings of a special class of 4-regular planar graphs, the medial graphs of polyhedral graphs, and we show that not every 4-regular planar graph has a Lombardi drawing. We have implemented our algorithm for 3-connected planar cubic graphs.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.