Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A simple proof of distance bounds for Gaussian rough paths (1206.5866v2)

Published 26 Jun 2012 in math.PR

Abstract: We derive explicit distance bounds for Stratonovich iterated integrals along two Gaussian processes (also known as signatures of Gaussian rough paths) based on the regularity assumption of their covariance functions. Similar estimates have been obtained recently in [Friz-Riedel, AIHP, to appear]. One advantage of our argument is that we obtain the bound for the third level iterated integrals merely based on the first two levels, and this reflects the intrinsic nature of rough paths. Our estimates are sharp when both covariance functions have finite 1-variation, which includes a large class of Gaussian processes. Two applications of our estimates are discussed. The first one gives the a.s. convergence rates for approximated solutions to rough differential equations driven by Gaussian processes. In the second example, we show how to recover the optimal time regularity for solutions of some rough SPDEs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube