Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semivariogram methods for modeling Whittle-Matérn priors in Bayesian inverse problems (1811.09446v3)

Published 23 Nov 2018 in math.NA, cs.NA, and stat.CO

Abstract: We present a new technique, based on semivariogram methodology, for obtaining point estimates for use in prior modeling for solving Bayesian inverse problems. This method requires a connection between Gaussian processes with covariance operators defined by the Mat\'ern covariance function and Gaussian processes with precision (inverse-covariance) operators defined by the Green's functions of a class of elliptic stochastic partial differential equations (SPDEs). We present a detailed mathematical description of this connection. We will show that there is an equivalence between these two Gaussian processes when the domain is infinite -- for us, $\mathbb{R}2$ -- which breaks down when the domain is finite due to the effect of boundary conditions on Green's functions of PDEs. We show how this connection can be re-established using extended domains. We then introduce the semivariogram method for estimating the Mat\'ern covariance parameters, which specify the Gaussian prior needed for stabilizing the inverse problem. Results are extended from the isotropic case to the anisotropic case where the correlation length in one direction is larger than another. Finally, we consider the situation where the correlation length is spatially dependent rather than constant. We implement each method in two-dimensional image inpainting test cases to show that it works on practical examples.

Citations (5)

Summary

We haven't generated a summary for this paper yet.