Papers
Topics
Authors
Recent
2000 character limit reached

A New Bound on the Minimum Distance of Cyclic Codes Using Small-Minimum-Distance Cyclic Codes

Published 21 Jun 2012 in cs.IT and math.IT | (1206.4976v3)

Abstract: A new bound on the minimum distance of q-ary cyclic codes is proposed. It is based on the description by another cyclic code with small minimum distance. The connection to the BCH bound and the Hartmann--Tzeng (HT) bound is formulated explicitly. We show that for many cases our approach improves the HT bound. Furthermore, we refine our bound for several families of cyclic codes. We define syndromes and formulate a Key Equation that allows an efficient decoding up to our bound with the Extended Euclidean Algorithm. It turns out that lowest-code-rate cyclic codes with small minimum distances are useful for our approach. Therefore, we give a sufficient condition for binary cyclic codes of arbitrary length to have minimum distance two or three and lowest code-rate

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.