Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining Educational Data Using Classification to Decrease Dropout Rate of Students (1206.3078v1)

Published 14 Jun 2012 in cs.IR

Abstract: In the last two decades, number of Higher Education Institutions (HEI) grows rapidly in India. Since most of the institutions are opened in private mode therefore, a cut throat competition rises among these institutions while attracting the student to got admission. This is the reason for institutions to focus on the strength of students not on the quality of education. This paper presents a data mining application to generate predictive models for engineering student's dropout management. Given new records of incoming students, the predictive model can produce short accurate prediction list identifying students who tend to need the support from the student dropout program most. The results show that the machine learning algorithm is able to establish effective predictive model from the existing student dropout data.

Citations (45)

Summary

We haven't generated a summary for this paper yet.