Long-Range Navigation on Complex Networks using Lévy Random Walks
Abstract: We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks, that is inspired by L\'evy random walks, generalizing previous navigation rules. We obtained exact expressions for the stationary probability distribution, the occupation probability, the mean first passage time, and the average time to reach a node on the network. We found that the long-range navigation using the L\'evy random walk strategy, compared with the normal random walk strategy, is more efficient at reducing the time to cover the network. The dynamical effect of using the L\'evy walk strategy is to transform a large-world network into a small world. Our exact results provide a general framework that connects two important fields: L\'evy navigation strategies and dynamics on complex networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.