Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Steady state and mean recurrence time for random walks on stochastic temporal networks (1407.4582v2)

Published 17 Jul 2014 in physics.soc-ph, cond-mat.dis-nn, and cs.SI

Abstract: Random walks are basic diffusion processes on networks and have applications in, for example, searching, navigation, ranking, and community detection. Recent recognition of the importance of temporal aspects on networks spurred studies of random walks on temporal networks. Here we theoretically study two types of event-driven random walks on a stochastic temporal network model that produces arbitrary distributions of interevent-times. In the so-called active random walk, the interevent-time is reinitialized on all links upon each movement of the walker. In the so-called passive random walk, the interevent-time is only reinitialized on the link that has been used last time, and it is a type of correlated random walk. We find that the steady state is always the uniform density for the passive random walk. In contrast, for the active random walk, it increases or decreases with the node's degree depending on the distribution of interevent-times. The mean recurrence time of a node is inversely proportional to the degree for both active and passive random walks. Furthermore, the mean recurrence time does or does not depend on the distribution of interevent-times for the active and passive random walks, respectively.

Citations (20)

Summary

We haven't generated a summary for this paper yet.