Papers
Topics
Authors
Recent
2000 character limit reached

Near-optimal Policy Optimization Algorithms for Learning Adversarial Linear Mixture MDPs

Published 17 Feb 2021 in cs.LG, math.OC, and stat.ML | (2102.08940v2)

Abstract: Learning Markov decision processes (MDPs) in the presence of the adversary is a challenging problem in reinforcement learning (RL). In this paper, we study RL in episodic MDPs with adversarial reward and full information feedback, where the unknown transition probability function is a linear function of a given feature mapping, and the reward function can change arbitrarily episode by episode. We propose an optimistic policy optimization algorithm POWERS and show that it can achieve $\tilde{O}(dH\sqrt{T})$ regret, where $H$ is the length of the episode, $T$ is the number of interactions with the MDP, and $d$ is the dimension of the feature mapping. Furthermore, we also prove a matching lower bound of $\tilde{\Omega}(dH\sqrt{T})$ up to logarithmic factors. Our key technical contributions are two-fold: (1) a new value function estimator based on importance weighting; and (2) a tighter confidence set for the transition kernel. They together lead to the nearly minimax optimal regret.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.