Papers
Topics
Authors
Recent
2000 character limit reached

Lower Bound on Weights of Large Degree Threshold Functions

Published 12 Apr 2012 in cs.CC | (1204.2652v3)

Abstract: An integer polynomial $p$ of $n$ variables is called a \emph{threshold gate} for a Boolean function $f$ of $n$ variables if for all $x \in \zoon$ $f(x)=1$ if and only if $p(x)\geq 0$. The \emph{weight} of a threshold gate is the sum of its absolute values. In this paper we study how large a weight might be needed if we fix some function and some threshold degree. We prove $2{\Omega(2{2n/5})}$ lower bound on this value. The best previous bound was $2{\Omega(2{n/8})}$ (Podolskii, 2009). In addition we present substantially simpler proof of the weaker $2{\Omega(2{n/4})}$ lower bound. This proof is conceptually similar to other proofs of the bounds on weights of nonlinear threshold gates, but avoids a lot of technical details arising in other proofs. We hope that this proof will help to show the ideas behind the construction used to prove these lower bounds.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.