Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tail asymptotics for cumulative processes sampled at heavy-tailed random times with applications to queueing models in Markovian environments

Published 29 Mar 2012 in math.PR, math.ST, and stat.TH | (1203.6574v9)

Abstract: This paper considers the tail asymptotics for a cumulative process ${B(t); t \ge 0}$ sampled at a heavy-tailed random time $T$. The main contribution of this paper is to establish several sufficient conditions for the asymptotic equality ${\sf P}(B(T) > bx) \sim {\sf P}(M(T) > bx) \sim {\sf P}(T>x)$ as $x \to \infty$, where $M(t) = \sup_{0 \le u \le t}B(u)$ and $b$ is a certain positive constant. The main results of this paper can be used to obtain the subexponential asymptotics for various queueing models in Markovian environments. As an example, using the main results, we derive subexponential asymptotic formulas for the loss probability of a single-server finite-buffer queue with an on/off arrival process in a Markovian environment.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.