Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical Normalization for Quadratic Discriminant Analysis and Classifying Cancer Subtypes (1203.6345v2)

Published 28 Mar 2012 in stat.ML

Abstract: We introduce a new discriminant analysis method (Empirical Discriminant Analysis or EDA) for binary classification in machine learning. Given a dataset of feature vectors, this method defines an empirical feature map transforming the training and test data into new data with components having Gaussian empirical distributions. This map is an empirical version of the Gaussian copula used in probability and mathematical finance. The purpose is to form a feature mapped dataset as close as possible to Gaussian, after which standard quadratic discriminants can be used for classification. We discuss this method in general, and apply it to some datasets in computational biology.

Citations (7)

Summary

We haven't generated a summary for this paper yet.