Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Sampling Style Adversarial Search Methods (1203.4011v1)

Published 15 Mar 2012 in cs.AI

Abstract: UCT has recently emerged as an exciting new adversarial reasoning technique based on cleverly balancing exploration and exploitation in a Monte-Carlo sampling setting. It has been particularly successful in the game of Go but the reasons for its success are not well understood and attempts to replicate its success in other domains such as Chess have failed. We provide an in-depth analysis of the potential of UCT in domain-independent settings, in cases where heuristic values are available, and the effect of enhancing random playouts to more informed playouts between two weak minimax players. To provide further insights, we develop synthetic game tree instances and discuss interesting properties of UCT, both empirically and analytically.

Citations (24)

Summary

We haven't generated a summary for this paper yet.