Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rollout Sampling Policy Iteration for Decentralized POMDPs (1203.3528v1)

Published 15 Mar 2012 in cs.AI

Abstract: We present decentralized rollout sampling policy iteration (DecRSPI) - a new algorithm for multi-agent decision problems formalized as DEC-POMDPs. DecRSPI is designed to improve scalability and tackle problems that lack an explicit model. The algorithm uses Monte- Carlo methods to generate a sample of reachable belief states. Then it computes a joint policy for each belief state based on the rollout estimations. A new policy representation allows us to represent solutions compactly. The key benefits of the algorithm are its linear time complexity over the number of agents, its bounded memory usage and good solution quality. It can solve larger problems that are intractable for existing planning algorithms. Experimental results confirm the effectiveness and scalability of the approach.

Citations (31)

Summary

We haven't generated a summary for this paper yet.