Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anytime Planning for Decentralized POMDPs using Expectation Maximization (1203.3490v1)

Published 15 Mar 2012 in cs.AI

Abstract: Decentralized POMDPs provide an expressive framework for multi-agent sequential decision making. While fnite-horizon DECPOMDPs have enjoyed signifcant success, progress remains slow for the infnite-horizon case mainly due to the inherent complexity of optimizing stochastic controllers representing agent policies. We present a promising new class of algorithms for the infnite-horizon case, which recasts the optimization problem as inference in a mixture of DBNs. An attractive feature of this approach is the straightforward adoption of existing inference techniques in DBNs for solving DEC-POMDPs and supporting richer representations such as factored or continuous states and actions. We also derive the Expectation Maximization (EM) algorithm to optimize the joint policy represented as DBNs. Experiments on benchmark domains show that EM compares favorably against the state-of-the-art solvers.

Citations (41)

Summary

We haven't generated a summary for this paper yet.