Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compiling Possibilistic Networks: Alternative Approaches to Possibilistic Inference (1203.3465v1)

Published 15 Mar 2012 in cs.AI

Abstract: Qualitative possibilistic networks, also known as min-based possibilistic networks, are important tools for handling uncertain information in the possibility theory frame- work. Despite their importance, only the junction tree adaptation has been proposed for exact reasoning with such networks. This paper explores alternative algorithms using compilation techniques. We first propose possibilistic adaptations of standard compilation-based probabilistic methods. Then, we develop a new, purely possibilistic, method based on the transformation of the initial network into a possibilistic base. A comparative study shows that this latter performs better than the possibilistic adap- tations of probabilistic methods. This result is also confirmed by experimental results.

Citations (22)

Summary

We haven't generated a summary for this paper yet.