Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small Count Privacy and Large Count Utility in Data Publishing (1202.3253v1)

Published 15 Feb 2012 in cs.DB

Abstract: While the introduction of differential privacy has been a major breakthrough in the study of privacy preserving data publication, some recent work has pointed out a number of cases where it is not possible to limit inference about individuals. The dilemma that is intrinsic in the problem is the simultaneous requirement of data utility in the published data. Differential privacy does not aim to protect information about an individual that can be uncovered even without the participation of the individual. However, this lack of coverage may violate the principle of individual privacy. Here we propose a solution by providing protection to sensitive information, by which we refer to the answers for aggregate queries with small counts. Previous works based on $\ell$-diversity can be seen as providing a special form of this kind of protection. Our method is developed with another goal which is to provide differential privacy guarantee, and for that we introduce a more refined form of differential privacy to deal with certain practical issues. Our empirical studies show that our method can preserve better utilities than a number of state-of-the-art methods although these methods do not provide the protections that we provide.

Citations (7)

Summary

We haven't generated a summary for this paper yet.