Considering a resource-light approach to learning verb valencies (1202.1054v1)
Abstract: Here we describe work on learning the subcategories of verbs in a morphologically rich language using only minimal linguistic resources. Our goal is to learn verb subcategorizations for Quechua, an under-resourced morphologically rich language, from an unannotated corpus. We compare results from applying this approach to an unannotated Arabic corpus with those achieved by processing the same text in treebank form. The original plan was to use only a morphological analyzer and an unannotated corpus, but experiments suggest that this approach by itself will not be effective for learning the combinatorial potential of Arabic verbs in general. The lower bound on resources for acquiring this information is somewhat higher, apparently requiring a a part-of-speech tagger and chunker for most languages, and a morphological disambiguater for Arabic.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.