Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Multitask Learning for Joint Multi-Feature and Multi-Dialect Morphological Modeling (1910.12702v1)

Published 28 Oct 2019 in cs.CL and cs.LG

Abstract: Morphological tagging is challenging for morphologically rich languages due to the large target space and the need for more training data to minimize model sparsity. Dialectal variants of morphologically rich languages suffer more as they tend to be more noisy and have less resources. In this paper we explore the use of multitask learning and adversarial training to address morphological richness and dialectal variations in the context of full morphological tagging. We use multitask learning for joint morphological modeling for the features within two dialects, and as a knowledge-transfer scheme for cross-dialectal modeling. We use adversarial training to learn dialect invariant features that can help the knowledge-transfer scheme from the high to low-resource variants. We work with two dialectal variants: Modern Standard Arabic (high-resource "dialect") and Egyptian Arabic (low-resource dialect) as a case study. Our models achieve state-of-the-art results for both. Furthermore, adversarial training provides more significant improvement when using smaller training datasets in particular.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nasser Zalmout (8 papers)
  2. Nizar Habash (66 papers)
Citations (24)