Papers
Topics
Authors
Recent
2000 character limit reached

Toroidal maps : Schnyder woods, orthogonal surfaces and straight-line representations

Published 4 Feb 2012 in cs.DM and math.CO | (1202.0911v2)

Abstract: A Schnyder wood is an orientation and coloring of the edges of a planar map satisfying a simple local property. We propose a generalization of Schnyder woods to graphs embedded on the torus with application to graph drawing. We prove several properties on this new object. Among all we prove that a graph embedded on the torus admits such a Schnyder wood if and only if it is an essentially 3-connected toroidal map. We show that these Schnyder woods can be used to embed the universal cover of an essentially 3-connected toroidal map on an infinite and periodic orthogonal surface. Finally we use this embedding to obtain a straight-line flat torus representation of any toroidal map in a polynomial size grid.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.