Shorter Tours by Nicer Ears: 7/5-approximation for graphic TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs
Abstract: We prove new results for approximating the graphic TSP and some related problems. We obtain polynomial-time algorithms with improved approximation guarantees. For the graphic TSP itself, we improve the approximation ratio to 7/5. For a generalization, the connected-$T$-join problem, we obtain the first nontrivial approximation algorithm, with ratio 3/2. This contains the graphic $s$-$t$-path-TSP as a special case. Our improved approximation guarantee for finding a smallest 2-edge-connected spanning subgraph is 4/3. The key new ingredient of all our algorithms is a special kind of ear-decomposition optimized using forest representations of hypergraphs. The same methods also provide the lower bounds (arising from LP relaxations) that we use to deduce the approximation ratios.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.