Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Construction of $\mathcal L^p$-strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions (1112.4960v1)

Published 21 Dec 2011 in math.FA and math.PR

Abstract: We provide a general construction scheme for $\mathcal Lp$-strong Feller processes on locally compact separable metric spaces. Starting from a regular Dirichlet form and specified regularity assumptions, we construct an associated semigroup and resolvents of kernels having the $\mathcal Lp$-strong Feller property. They allow us to construct a process which solves the corresponding martingale problem for all starting points from a known set, namely the set where the regularity assumptions hold. We apply this result to construct elliptic diffusions having locally Lipschitz matrix coefficients and singular drifts on general open sets with absorption at the boundary. In this application elliptic regularity results imply the desired regularity assumptions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.