Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary-preserving weak approximations of some semilinear stochastic partial differential equations (2412.10800v1)

Published 14 Dec 2024 in math.NA, cs.NA, and math.PR

Abstract: We propose and analyse a boundary-preserving numerical scheme for the weak approximations of some stochastic partial differential equations (SPDEs) with bounded state-space. We impose regularity assumptions on the drift and diffusion coefficients only locally on the state-space. In particular, the drift and diffusion coefficients may be non-globally Lipschitz continuous and superlinearly growing. The scheme consists of a finite difference discretisation in space and a Lie--Trotter splitting followed by exact simulation and exact integration in time. We prove weak convergence of optimal order 1/4 for globally Lipschitz continuous test functions of the scheme by proving strong convergence towards a strong solution driven by a different noise process. Boundary-preservation is ensured by the use of Lie--Trotter time splitting followed by exact simulation and exact integration. Numerical experiments confirm the theoretical results and demonstrate the effectiveness of the proposed Lie--Trotter-Exact (LTE) scheme compared to existing methods for SPDEs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com