Strong approximation for the total space of certain quadric fibrations (1112.2991v1)
Abstract: We study equations in four variables (x,y,z,t) of the shape q(x,y,z)=P(t), where q(x,y,z) is an indefinite ternary quadratic form over the integers and P(t) is a polynomial in one variable with integral coefficients. If P(t) is not the product of a constant and the square of a polynomial, strong approximation holds for integral solutions (x,y,z,t). In the general case, we show that the integral Brauer-Manin conditions are the only obstructions to strong approximation. We actually study the analogous situation over an arbitrary number field. --- Nous \'etudions les \'equations `a quatre variables (x,y,z,t) `a coefficients entiers du type q(x,y,z)=P(t), o`u q(x,y,z) est une forme quadratique enti`ere ternaire ind\'efinie sur les r\'eels, et P(t) un polyn^ome `a coefficients entiers en une variable. Lorsque le polyn^ome n'est pas le produit d'une constante et d'un carr\'e de polyn^ome, nous \'etablissons l'approximation forte pour les solutions de ces \'equations en entiers (x,y,z,t). Dans le cas g\'en\'eral, nous montrons que l'obstruction de Brauer-Manin enti`ere est la seule obstruction `a l'approximation forte. Nous \'etudions la situation sur un corps de nombres quelconque.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.