Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Formes quadratiques de discriminants emboîtés (1402.0344v1)

Published 3 Feb 2014 in math.NT, cs.CR, and cs.DM

Abstract: Quadratic forms with embedded discriminants. Integral binary quadratic forms have multiple applications, for example in factorization or cryptography. The Nice family of cryptographic systems makes use of quadratic forms with different discriminants $\pm p$, and $\pm pq2$ where $p$, $q$ are large primes. This paper shows the precise links between forms with $D$ discriminant and forms with $Df2$ discriminant, which are crucial in the analysis of the systems Nice and theirs attacks. We also introduce the notion of semi-equivalence of binary quadratic forms, and give some characterizations of semi-equivalent forms, which are useful in the analysis of these attacks. ----- Les formes quadratiques binaires fournissent un moyen explicite pour manipuler des id\'eaux de corps quadratiques, et leurs applications pratiques sont multiples. De nombreux algorithmes de factorisation les utilisent. Elle sont aussi utilis\'ees en cryptographie, en particulier pour les syst`emes Nice. Les syst`emes de chiffrement Nice utilisent des formes quadratiques de discriminants $\pm p$ et $\pm pq2$ o`u $p$ et $q$ sont des nombres premiers. Cet article pr\'ecise les liens entre les formes de discriminant $D$ et celles de discriminant $Df2$, ce qui est essentiel pour l'analyse de Nice et de ses attaques. Il introduit aussi la notion de formes quadratiques semi-\'equivalentes et en explicite plusieurs caract\'erisations, utiles pour l'analyse de ces attaques.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)