Papers
Topics
Authors
Recent
Search
2000 character limit reached

The cusped hyperbolic census is complete

Published 12 May 2014 in math.GT and cs.CG | (1405.2695v1)

Abstract: From its creation in 1989 through subsequent extensions, the widely-used "SnapPea census" now aims to represent all cusped finite-volume hyperbolic 3-manifolds that can be obtained from <= 8 ideal tetrahedra. Its construction, however, has relied on inexact computations and some unproven (though reasonable) assumptions, and so its completeness was never guaranteed. For the first time, we prove here that the census meets its aim: we rigorously certify that every ideal 3-manifold triangulation with <= 8 tetrahedra is either (i) homeomorphic to one of the census manifolds, or (ii) non-hyperbolic. In addition, we extend the census to 9 tetrahedra, and likewise prove this to be complete. We also present the first list of all minimal triangulations of all census manifolds, including non-geometric as well as geometric triangulations.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.