Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is the k-NN classifier in high dimensions affected by the curse of dimensionality? (1110.4347v3)

Published 19 Oct 2011 in stat.ML

Abstract: There is an increasing body of evidence suggesting that exact nearest neighbour search in high-dimensional spaces is affected by the curse of dimensionality at a fundamental level. Does it necessarily mean that the same is true for k nearest neighbours based learning algorithms such as the k-NN classifier? We analyse this question at a number of levels and show that the answer is different at each of them. As our first main observation, we show the consistency of a k approximate nearest neighbour classifier. However, the performance of the classifier in very high dimensions is provably unstable. As our second main observation, we point out that the existing model for statistical learning is oblivious of dimension of the domain and so every learning problem admits a universally consistent deterministic reduction to the one-dimensional case by means of a Borel isomorphism.

Citations (109)

Summary

We haven't generated a summary for this paper yet.