Papers
Topics
Authors
Recent
2000 character limit reached

Density Matrix Recursion Method: Genuine Multisite Entanglement Distinguishes Odd from Even Quantum Heisenberg Ladders

Published 17 Oct 2011 in quant-ph and cond-mat.str-el | (1110.3646v2)

Abstract: We introduce an analytical iterative method, the density matrix recursion method, to generate arbitrary reduced density matrices of superpositions of short-range dimer coverings on periodic or non-periodic quantum spin-1/2 ladder lattices, with an arbitrary number of legs. The method can be used to calculate bipartite as well as multipartite physical properties, including bipartite and multi-partite entanglement. We apply this technique to distinguish between even- and odd-legged ladders. Specifically, we show that while genuine multi-partite entanglement decreases with increasing system size for the even-legged ladder states, it does the opposite for odd-legged ones.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.