Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixed-Parameter Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset (1110.0259v2)

Published 3 Oct 2011 in cs.DS and cs.CC

Abstract: Given a directed graph $G$, a set of $k$ terminals and an integer $p$, the \textsc{Directed Vertex Multiway Cut} problem asks if there is a set $S$ of at most $p$ (nonterminal) vertices whose removal disconnects each terminal from all other terminals. \textsc{Directed Edge Multiway Cut} is the analogous problem where $S$ is a set of at most $p$ edges. These two problems indeed are known to be equivalent. A natural generalization of the multiway cut is the \emph{multicut} problem, in which we want to disconnect only a set of $k$ given pairs instead of all pairs. Marx (Theor. Comp. Sci. 2006) showed that in undirected graphs multiway cut is fixed-parameter tractable (FPT) parameterized by $p$. Marx and Razgon (STOC 2011) showed that undirected multicut is FPT and directed multicut is W[1]-hard parameterized by $p$. We complete the picture here by our main result which is that both \textsc{Directed Vertex Multiway Cut} and \textsc{Directed Edge Multiway Cut} can be solved in time $2{2{O(p)}}n{O(1)}$, i.e., FPT parameterized by size $p$ of the cutset of the solution. This answers an open question raised by Marx (Theor. Comp. Sci. 2006) and Marx and Razgon (STOC 2011). It follows from our result that \textsc{Directed Multicut} is FPT for the case of $k=2$ terminal pairs, which answers another open problem raised in Marx and Razgon (STOC 2011).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rajesh Chitnis (22 papers)
  2. MohammadTaghi Hajiaghayi (104 papers)
  3. Dániel Marx (79 papers)
Citations (67)

Summary

We haven't generated a summary for this paper yet.