The Order on Projections in C*-Algebras of Real Rank Zero (1109.5429v4)
Abstract: We prove a number of fundamental facts about the canonical order on projections in C*-algebras of real rank zero. Specifically, we show that this order is separative and that arbitrary countable collections have equivalent (in terms of their lower bounds) decreasing sequences. Under the further assumption that the order is countably downwards closed, we show how to characterize greatest lower bounds of finite collections of projections, and their existence, using the norm and spectrum of simple product expressions of the projections in question. We also characterize the points at which the canonical homomorphism to the Calkin algebra preserves least upper bounds of countable collections of projections, namely that this occurs precisely when the span of the corresponding subspaces is closed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.