Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Recursive Least-Squares: Stability and Performance Analysis (1109.4627v1)

Published 20 Sep 2011 in cs.NI, cs.SY, and math.OC

Abstract: The recursive least-squares (RLS) algorithm has well-documented merits for reducing complexity and storage requirements, when it comes to online estimation of stationary signals as well as for tracking slowly-varying nonstationary processes. In this paper, a distributed recursive least-squares (D-RLS) algorithm is developed for cooperative estimation using ad hoc wireless sensor networks. Distributed iterations are obtained by minimizing a separable reformulation of the exponentially-weighted least-squares cost, using the alternating-minimization algorithm. Sensors carry out reduced-complexity tasks locally, and exchange messages with one-hop neighbors to consent on the network-wide estimates adaptively. A steady-state mean-square error (MSE) performance analysis of D-RLS is conducted, by studying a stochastically-driven `averaged' system that approximates the D-RLS dynamics asymptotically in time. For sensor observations that are linearly related to the time-invariant parameter vector sought, the simplifying independence setting assumptions facilitate deriving accurate closed-form expressions for the MSE steady-state values. The problems of mean- and MSE-sense stability of D-RLS are also investigated, and easily-checkable sufficient conditions are derived under which a steady-state is attained. Without resorting to diminishing step-sizes which compromise the tracking ability of D-RLS, stability ensures that per sensor estimates hover inside a ball of finite radius centered at the true parameter vector, with high-probability, even when inter-sensor communication links are noisy. Interestingly, computer simulations demonstrate that the theoretical findings are accurate also in the pragmatic settings whereby sensors acquire temporally-correlated data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Gonzalo Mateos (61 papers)
  2. Georgios B. Giannakis (182 papers)
Citations (104)

Summary

We haven't generated a summary for this paper yet.