Papers
Topics
Authors
Recent
2000 character limit reached

Point sets on the sphere $\mathbb{S}^2$ with small spherical cap discrepancy

Published 15 Sep 2011 in math.NA | (1109.3265v1)

Abstract: In this paper we study the geometric discrepancy of explicit constructions of uniformly distributed points on the two-dimensional unit sphere. We show that the spherical cap discrepancy of random point sets, of spherical digital nets and of spherical Fibonacci lattices converges with order $N{-1/2}$. Such point sets are therefore useful for numerical integration and other computational simulations. The proof uses an area-preserving Lambert map. A detailed analysis of the level curves and sets of the pre-images of spherical caps under this map is given.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.