Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spherical cap discrepancy of perturbed lattices under the Lambert projection (2202.13894v2)

Published 28 Feb 2022 in math.NA, cs.NA, and math.CA

Abstract: Given any full rank lattice and a natural number N , we regard the point set given by the scaled lattice intersected with the unit square under the Lambert map to the unit sphere, and show that its spherical cap discrepancy is at most of order N , with leading coefficient given explicitly and depending on the lattice only. The proof is established using a lemma that bounds the amount of intersections of certain curves with fundamental domains that tile R2 , and even allows for local perturbations of the lattice without affecting the bound, proving to be stable for numerical applications. A special case yields the smallest constant for the leading term of the cap discrepancy for deterministic algorithms up to date.

Citations (5)

Summary

We haven't generated a summary for this paper yet.